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Abstract
The generalized Pauli group and its normalizer, the Clifford group, have a
rich mathematical structure which is relevant to the problem of constructing
symmetric informationally complete POVMs (SIC-POVMs). To date, almost
every known SIC-POVM fiducial vector is an eigenstate of a ‘canonical’ unitary
in the Clifford group. I show that every canonical unitary in prime dimensions
p > 3 lies in the same conjugacy class of the Clifford group and give a class
representative for all such dimensions. It follows that if even one such SIC-
POVM fiducial vector is an eigenvector of such a unitary, then all of them
are (for a given such dimension). I also conjecture that in all dimensions d,
the number of conjugacy classes is bounded above by 3 and depends only on
d mod 9, and I support this claim with computer computations in all dimensions
<48.

PACS numbers: 03.65.−w, 02.10.De

1. Introduction

In the field of quantum information, many diverse applications make frequent use of the
notion of optimal measurement: optimal quantum state tomography [1], quantum cloning
[2, 3], error-free state discrimination [4, 5], certain quantum key distribution protocols
[6, 7] and quantum algorithms [8, 9] are but a few examples. Often, the optimal solution
to a problem is given by a generalized measurement known as a positive-operator valued
measure, or POVM [10]. A POVM is a set of positive operators Ei such that the probability of
obtaining the ith outcome is given by Tr(Eiρ), where ρ is the density operator for the system
being measured. A POVM must satisfy the completeness condition,

∑
i Ei = 1, which is

equivalent to saying the probabilities of the outcomes must sum to unity. In this paper, we
deal only with POVMs having a finite number of elements.

If the statistics of a POVM are sufficient to uniquely determine any quantum state with
fixed dimension d, the POVM is said to be informationally complete (for that particular d).
The notion of informational completeness was first discussed in [11], and subsequently in
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[12–15], as well as in [16, 17] when applied to just pure states. Informationally complete
POVMs have applications to foundational studies where they play a role in the Bayesian
formulation of quantum mechanics [18–21], and make particularly nice ‘standard quantum
measurements’ [22]. Since there are d2 − 1 parameters in an unknown density operator, an
informationally complete POVM requires at least d2 −1 independent measurement outcomes;
together with the completeness condition this implies that a minimal informationally complete
POVM is one with exactly d2 elements [25]. If an informationally complete POVM is to be
maximally efficient at determining a state via tomography, then the POVM elements should be
proportional to one-dimensional projectors. If this is the case, and in addition the vectors onto
which the POVM elements project are evenly spaced in Hilbert space, i.e. the squared inner
products are the same for any pair of distinct vectors, then the POVM is said to be symmetric.
This motivates the definition of a symmetric informationally complete POVM, or SIC-POVM.

Definition 1. A SIC-POVM S on a d-dimensional Hilbert space C
d is a POVM with d2

elements Ei such that each Ei ∈ S is rank one, i.e. Ei ∝ |ψi〉〈ψi | for some |ψi〉 ∈ C
d , and

each pair of distinct normalized vectors satisfies

|〈ψi |ψj 〉|2 = 1

d + 1
. (1)

Thus, a SIC-POVM is a POVM that is informationally complete, minimal and symmetric.
(This is actually redundant because minimal and symmetric implies informationally complete.)
SIC-POVMs were discovered by Zauner [26] and independently by Renes et al [27]. Exact
solutions to equation (1) exist in dimensions 2–13, 15 and 19, and numerical examples exist
in all dimensions �45 [26–32]. SIC-POVMs are known in the mathematical literature as
equiangular lines, and have been studied for a number of years in the context of frame theory,
t-designs and spherical codes [33].

A POVM is group covariant [34] if there exists a group G of order d2 with a projective
unitary irreducible representation (UIR) on C

d such that the conjugation action of the projective
UIR on the POVM merely permutes the measurement outcome labels. Nearly every SIC-
POVM to date has been constructed using group covariance under the group Zd × Zd in a
manner defined as follows1. Fix an orthonormal basis for C

d , and define the operators

Djk = ωjk

d−1∑
n=0

ωjn|n ⊕ k〉〈n|, (2)

where ω = e2π i/d is a primitive dth root of unity and ⊕ denotes addition mod d. The operators
Djk form a projective UIR of Zd ×Zd and generate the generalized Pauli group, or GP group,
denoted GP(d). Then construct a SIC-POVM by finding a normalized fiducial vector, |ψ0〉,
such that the set of distinct vectors in {Djk|ψ0〉}d−1

j,k=0 have the same absolute inner product
onto the fiducial state. This implies equation (1), and the SIC-POVM is then formed by the
set of subnormalized projectors

Ejk = 1

d
Djk|ψ0〉〈ψ0|D†

jk. (3)

In this paper, we are interested solely in SIC-POVMs formed via this construction; for the rest
of the paper, ‘SIC-POVM’ and ‘fiducial vector’ imply GP covariance.

Since the SIC-POVMs we consider are all covariant under the action of GP(d), we can
also consider the action of the normalizer of GP(d) in U(d), the so-called Clifford group,

1 In [27], Renes et al mention having numerically constructed SIC-POVMs which are group covariant with respect to
four other groups, but these constructions appear not to yield SIC-POVMs in every dimension. Also, [29] constructs
analytic group covariant solutions using other groups in dimensions 6 and 8.
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denoted C(d). Given any fiducial vector |ψ0〉 and a Clifford group element U,U |ψ0〉 is also
a fiducial vector. We can extend C(d) to allow anti-unitary operators as well, obtaining the
extended Clifford group, denoted EC(d). Then given a fixed fiducial vector |ψ0〉, every SIC-
POVM in that orbit can be written as U |ψ0〉 for some U ∈ EC(d). Since the action of C(d)

or EC(d) on the SIC-POVM is a conjugation action, we are really interested in C(d)/I (d)

and EC(d)/I (d), where I (d) is the centre of U(d) consisting of all matrices which are just
a phase times the identity matrix. We denote these projected groups as PC(d) and PEC(d),
respectively.

We now mention a theorem due to Appleby [31] which characterizes the groups PC(d)

and PEC(d). Since we are primarily concerned with prime dimensions >3 in this paper, we
will state the theorem restricted to this special case. Recall that the group SL(2, p) is the group
of 2 × 2 matrices defined over the field Zp having unit determinant in Zp. Define ESL(2, p)

to be the group obtained by adding the generator J = ( 1
0

0
−1

)
to SL(2, p).

Theorem 1 (Appleby). Let p be a prime >3. Then PC(p) is isomorphic to SL(2, p) � Z
2
p,

and PEC(p) is isomorphic to ESL(2, p) � Z
2
p.

Before we can appreciate the significance of this theorem for our purposes, we need one
more definition. Define the Clifford trace of any element U ∈ PEC(p) as follows. From
theorem 1, there exists an isomorphic image of U in ESL(2, p) � Z

2
p which we can represent

as an ordered pair (F, χ), where F ∈ ESL(2, p) and χ ∈ Z
2
p. The Clifford trace of U, denoted

TrC(U), is defined as TrC(U) = Tr(F ), where the trace on the right-hand side is taken over
Zp. Following Appleby [31], we call any U with TrC(U) = −1 mod p a canonical element,
provided it is not the identity (which can only happen when p = 3). As an example of such
an element that exists in every finite dimension, define the matrix Z = ( 0

1
−1
−1

)
. This matrix,

whose importance was first recognized by Zauner [26], will feature prominently in the main
result of this paper. (Colin et al [35] also discuss an element of SL(2, d̄) that is conjugacy
equivalent to Z and mentions its importance to the SIC-POVM problem.)

The following three conjectures relate theorem 1 to SIC-POVMs through the Clifford
trace [26, 31]. All three conjectures assert that a SIC-POVM exists in every finite dimension,
but they differ in the properties of the fiducial vectors used to generate the SIC-POVM. Since
we are primarily interested in the case of prime dimensions (p > 3), we state the conjectures
specialized to this case and refer the reader to [31] for a discussion of the more general
conjectures.

Conjecture 1 (Appleby). SIC-POVMs exist for every prime dimension, and every SIC-POVM
fiducial vector is an eigenvector of a canonical element of PC(p).

Conjecture 2 (Zauner). For every prime dimension, there exists a SIC-POVM fiducial vector
that is an eigenvector of the unitary operator associated with the matrix Z.

Conjecture 3 (Appleby). SIC-POVMs exist for every prime dimension, and every SIC-POVM
fiducial vector is an eigenvector of a canonical element of PC(p) that is conjugate to the
matrix Z.

Conjectures 1 and 2 hold for every known SIC-POVM, and in fact a further extension
to all dimensions (not just primes) also holds [31]. Conjecture 3 is clearly stronger than
conjecture 2, and it also implies conjecture 1. Grassl [29] has constructed a counterexample in
dimension 12 to the analogue of conjecture 3 extended to composite dimensions, but there are
no known counterexamples in other dimensions. Although conjecture 3 is not true in general,
it is important to know for which dimensions it is valid, as the following illustrates.
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Because EC(d) acts on GP(d) via conjugation, if one were to search for a SIC-POVM
by assuming conjecture 1, it is sufficient to choose one element from each of the conjugacy
classes of EC(d) having Clifford trace = −1, and search the (degenerate) eigenspaces of these
elements. This procedure would yield either a SIC-POVM or (if the search was exhaustive) a
counterexample to the conjecture.

The main result of this paper is to show that such a search as described above need only
check one conjugacy class element if the dimension is a prime >3, thus reducing the search
to one over a bounded number of conjugacy classes. This is done by demonstrating the
equivalence of all three conjectures when the dimension is prime. This also shows that if one
fiducial vector can be found as an eigenvector of the canonical class representative (Z), then
every other fiducial vector in prime dimensions >3 automatically satisfies conjecture 1.

Before stating the main result in section 3, we discuss some background results from
number theory and prove some theorems applicable to the proof of the main theorem. Readers
well versed in number theory may skip section 2 and proceed directly to section 3, although
it may be useful to skim the former to glean the notation used in the latter. In section 4, we
state an extension of the main theorem and offer supporting numerical evidence.

2. Background results from number theory

In this section we introduce a basic concept from number theory, the Legendre symbol, and
state some properties and theorems that will be used in the proof of the main theorem. The
basic material can be found in any textbook on the subject (see, for example, [36, 37]), but we
review it here for completeness.

Let p be an odd prime and n be any integer such that gcd(n, p) = 1. Then n is a quadratic
residue mod p if there exists an integer k such that k2 = n mod p. If no such integer exists,
then n is said to be a quadratic nonresidue. Since we will only be dealing with quadratic
residues mod p, we will frequently omit the p and the word quadratic and simply say, for
example, ‘n is a residue’, with p and quadratic being understood from the context. We use the
symbols n Rp and n Np to denote that n is a residue or nonresidue, respectively.

The Legendre symbol,
(

n
p

)
, is defined by

(
n

p

)
=




+1 if n Rp,

−1 if n Np,

0 if p|n.

(4)

Theorem 2. Let m and n be any integers, and p an odd prime. Then the following properties
of the Legendre symbol hold:

Property 1:

(
n

p

)
= n(p−1)/2 mod p,

Property 2:

(
mn

p

)
=

(
m

p

)(
n

p

)
,

Property 3:

(
n−1

p

)
=

(
n

p

)
,

Property 4:
p−1∑
n=1

(
n

p

)
= 0,

Property 5:

(−3

p

)
=

{
+1 if p = +1 mod 3,

−1 if p = −1 mod 3.
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Proof. As these properties are very basic, their proofs are not particularly enlightening, so
we omit them. See [36, 37] for proofs. Property 1 is known as Euler’s criterion. Property 4
simply says that the number of residues and nonresidues is exactly (p − 1)/2. �

We now prove some useful results that we will need in section 3. In the interest of brevity
the proofs are concise, but expanded versions of theorems 3 and 4 can be found in [37].

Theorem 3.
p−2∑
n=1

(
n

p

)(
n + 1

p

)
= −1. (5)

Proof. Since all integers in the interval [1, p − 2] are invertible, we can ‘factor’ an n out of
the second factor in the sum, using property 2 to combine this n with the first factor:

p−2∑
n=1

(
n

p

)(
n + 1

p

)
=

p−2∑
n=1

(
n2

p

)(
1 + n−1

p

)
=

p−2∑
n=1

(
1 + n−1

p

)
. (6)

Because all the inverses of elements in the range [1, p − 2] are still in that range, this sum has
the same value as the following sum, which can be immediately evaluated by reindexing the
sum and using property 4:

p−2∑
n=1

(
1 + n−1

p

)
=

p−2∑
n=1

(
1 + n

p

)
= −1. (7)

�

Theorem 4. Let N(p) be the number of consecutive residues in the interval [1, p − 1]. Then
N(p) is given exactly by

N(p) = 1
4

(
p − 4 − (−1)(p−1)/2

)
. (8)

Proof. The proof follows [37]. Let the function cp(n) be defined by

cp(n) =
{

1 if n Rp and (n + 1) Rp,

0 otherwise.
(9)

Thus cp(n) is the indicator function for adjacent residues. Note that

cp(n) = 1

4

(
1 +

(
n

p

))(
1 +

(
n + 1

p

))
. (10)

Then we can write N(p) as

N(p) =
p−2∑
n=1

cp(n). (11)

Expanding the expression for cp(n), we get four sums:

N(p) = 1

4

p−2∑
n=1

(
1 +

(
n

p

)
+

(
n + 1

p

)
+

(
n

p

)(
n + 1

p

))
. (12)

The first three can be evaluated using Euler’s criterion and property 4, while the last is the
content of theorem 3. The result follows directly. �
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Theorem 5 ∑
n Rp

(
n + 1

p

)
= (1 − p)

2
+ 2N(p) +

1 + (−1)(p−1)/2

2
= −1. (13)

Proof. Since there are exactly (p − 1)/2 residues, the least possible value of this sum is
achieved if every term is −1, giving the first term in the middle equality. However, this lower
bound under counts whenever both n and n + 1 are residues, so we add 2N(p) to correct for
this. The only other consideration is if −1 Rp, a term which is not included in the N(p)

correction, since 0 is neither a residue nor a nonresidue. In this case, we should add only 1
instead of two, since the Legendre symbol of 0 is 0. The final term

1
2

(
1 + (−1)(p−1)/2

)
(14)

has the requisite property. Summing these terms and plugging in the formula from theorem 4
completes the proof. �

Theorem 6. Let f (x) be a polynomial with integral coefficients. Let ϒ(f ) be the number of
mutually incongruent solutions in x and y to the equation y2 = f (x) mod p. Then

ϒ(f ) = p +
p−1∑
n=0

(
f (n)

p

)
. (15)

Proof. If f (n) Rp, then there are two solutions, ±y. If f (n) Np, there are no solutions, and
if f (n) = 0, there is only one solution, y = 0. We simply note that the following term counts
the number of solutions correctly for fixed n, and the proof is immediate:

(
1 +

(
f (n)

p

))
=




2 if f (n) Rp

0 if f (n) Np

1 if f (n) = 0.

(16)

�

3. All canonical unitaries are conjugacy equivalent

In this section we prove the main theorem. Throughout this section, assume that p is a
prime >3. Because of the isomorphism in theorem 1, we can work exclusively in
ESL(2, p) � Z

2
p. In fact, we need only work in SL(2, p) � Z

2
p because SIC-POVMs always

come in complex conjugate pairs; any fiducial vector which is an eigenvector of an element in
PEC(d) that is not an eigenvector of an element of PC(d) will have a conjugate fiducial vector
which is an eigenvector of an element of PC(d). So a search for a fiducial vector satisfying
conjecture 1 need only check elements of SL(2, p) � Z

2
p. Recall that the composition rule on

SL(2, p) � Z
2
p is defined as follows:

(F, χ) ◦ (G, ζ ) = (FG, χ + Fζ). (17)

The first step is to prove that one need only consider elements of the form (F, 0), which we
prove as a separate theorem.

Theorem 7. For all (F, χ) ∈ SL(2, p) � Z
2
p with Tr(F ) �= 2 mod p, (F, χ) is in the same

conjugacy class as (F, 0).

Proof. We would like to show that there always exists (G, ζ ) ∈ SL(2, p) � Z
2
p such that

(G, ζ ) ◦ (F, χ) ◦ (G, ζ )−1 = (F, 0). (18)
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To satisfy this conjugacy relation, we will see that it is sufficient to consider elements with
G = I . Expanding the previous formula with G = I , we obtain an equation relating ζ to F
and χ :

χ = (F − I )ζ. (19)

This equation can be solved for ζ whenever Det(F−I ) �= 0 mod p. Expanding the determinant
of F − I , we obtain

Det(F ) − Tr(F ) + 1 �= 0, (20)

from which the trace condition on F follows immediately. �

The main theorem is concerned with F matrices having trace = −1 mod p. Since the
identity matrix satisfies this condition when p = 3, i.e. Tr(I ) = 2 = −1 mod 3, it is necessary
to exclude this case.

Note that in the previous proof, we considered only elements of SL(2, p) � Z
2
p of the

form (I, ζ ). In the next proof, we work only with G ∈ SL(2, p). By concatenating these two
results, our general element is of the form (G, ζ ).

We now embark on a proof of the main theorem, making use of the results of section 2.

Theorem 8. Let p be a prime >3, and F ∈ SL(2, p) with Tr(F ) = −1 mod p. Then there
exists a G ∈ SL(2, p) such that

GFG−1 = Z =
(

0 −1
1 −1

)
. (21)

Proof. Let

F =
(

α β

γ −1 − α

)
, G =

(
a b

c d

)
(22)

be matrices in SL(2, p). Note that the conditions Det(F ) = −Tr(F ) = 1 hold, and we
have the freedom to choose the matrix elements of G as long as they satisfy the constraint
Det(G) = 1. If the matrix elements a and b of G are chosen to be

a = c(α + 1) + dγ, b = cβ − dα, (23)

then the relation

GF = ZG (24)

always holds, so c and d are free parameters that must be chosen to satisfy Det(G) = 1.
Expanding the formula for Det(G) and simplifying, we obtain the following equation for c
and d as a function of the matrix elements of F:

d2γ + cd(2α + 1) − c2β = 0. (25)

We must show that this equation always has a solution, a task which takes up the remainder
of the proof. We proceed in three cases: γ = 0, γ Rp, and γ Np.

Case 1: γ = 0
In this case, setting c = 1, equation (25) simplifies to

d(2α + 1) = β. (26)

This equation can always be solved for d unless α = −2−1. But suppose by contradiction that
it was possible that α = −2−1. Then comparing with the constraint on the determinant of F,
we find that

Det(F ) = 1 mod p ⇒ −2−1(−1 + 2−1) = 1 mod p, (27)
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which implies that 4 = 1 mod p, something which impossible since p �= 3. This completes
the demonstration of case 1.

Before proceeding to the second two cases, it pays to simplify the form of equation (25)
using the assumption that γ �= 0. Using the fact that gcd(2γ, p) = 1, we can complete the
square in equation (25) while preserving its solutions to obtain

(2γ d + c(2α + 1))2 = (c(2α + 1))2 + 4γ (1 + c2β). (28)

Since 4 Rp, so is 4−1 Rp, and by expanding the right-hand side we can further simplify this
to

(4−1/22γ d + c4−1/2(2α + 1))2 = γ − 3(4−1)c2. (29)

Now a simple change of variables given by

x = dγ + c(α + 2−1), y = 2−1c (30)

allows this to be written in the very compact form

x2 = γ − 3y2. (31)

From this simplified form, we can immediately solve case 2.

Case 2: γ Rp

If γ Rp, simply choose y = 0 (implying c = 0) and then x = γ 1/2 can be inverted for d. This
concludes case 2.

The remaining case is more difficult; it is the reason we developed so much machinery in
section 2.

Case 3: γ Np

By theorem 6, the number of solutions ϒ to equation (31) is given by

ϒ = p +
p−1∑
n=0

(
γ − 3n2

p

)
. (32)

By taking out the n = 0 term from the sum and ‘factoring out’ a γ from the Legendre symbol,
this becomes

ϒ = p − 1 −
p−1∑
n=1

(
1 − 3γ −1n2

p

)
. (33)

The sum can now be rewritten to go over only the residues, since n appears only to the second
power inside the summand. A factor of two is necessary to account for both the square roots
of the residue:

ϒ = p − 1 − 2
∑
n Rp

(
1 − 3γ −1n

p

)
. (34)

This is nearly in a form where theorem 5 is applicable. To get it in such a form, we consider
two cases, p = ±1 mod 3, and denote the number of solutions in each case as ϒ±. First, note
that since γ Np, the sum in equation (34) can be reordered and written as

ϒ± = p − 1 − 2
∑
n Np

(
1 − 3n

p

)
. (35)

From property 5 in theorem 2, we know when −3 Rp or −3 Np, so equation (35) can be
reordered to become
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ϒ+ = p − 1 − 2
∑
n Np

(
n + 1

p

)
, (36)

ϒ− = p − 1 − 2
∑
n Rp

(
n + 1

p

)
. (37)

To calculate ϒ+, note the following simple identity:

∑
n Np

(
n + 1

p

)
=

p−1∑
n=1

(
n + 1

p

)
−

∑
n Rp

(
n + 1

p

)

= −1 −
∑
n Rp

(
n + 1

p

)
, (38)

where property 4 of theorem 2 was used. So the formula for ϒ± becomes

ϒ± = p ± 1 ± 2
∑
n Rp

(
n + 1

p

)
. (39)

Now plug in the results of theorem 5 to obtain

ϒ± = p ∓ 1, (40)

and so the number of solutions is strictly greater than zero. �

The proof of theorem 8 demonstrates that there is exactly one conjugacy class with
trace = −1 mod p in the group SL(2, p) � Z

2
p if the dimension p is a prime >3. The

consequences for conjectures 1, 2 and 3 are summarized in the following corollary.

Corollary 1. For prime dimensions p > 3, conjectures 1, 2 and 3 are equivalent.

4. A further conjecture

To state the conjecture, we make use of the extended theorem classifying the Clifford group
in non-prime dimensions found in [31]. Let

d̄ =
{

d if d is odd,

2d if d is even.
(41)

Then the projective Clifford group PC(d) and the projective extended Clifford group PEC(d)

are homomorphic to SL(2, d̄) � Z
2
d and ESL(2, d̄) � Z

2
d , respectively. The kernel of the

homomorphism is an order 8 subgroup isomorphic to Z
3
2. See [31] for details.

Conjecture 4. Let Td denote the number of conjugacy classes of the group SL(2, d̄) (for
d > 1) having trace = −1 mod d. Then Td is exactly given by

Td =



3 if 3|d and 9� |d,

2 if 9|d,

1 otherwise.
(42)

Note the strange interplay between d and d̄ . The results of section 3 establish the truth
of this conjecture when d is a prime >3. However, the remaining cases are not approachable
via a direct application of the methods found here because of the presence of zero divisors in
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arithmetic modulo d. We therefore leave an analytic demonstration of conjecture 4 to future
work, and instead establish its plausibility algorithmically. Using the computer program GAP,
we have established the truth of conjecture 4 in all dimensions < 48.

There are two points now worth emphasizing. Conjecture 4 attempts to classify exactly
for which dimensions the equivalence of the three conjectures 1, 2 and 3 holds. The answer
appears to be ‘any dimension not divisible by 3’. Note that this agrees with the results in [29].
Second, the computer program GAP does not use floating-point arithmetic. This means that
the algorithmic verification of conjecture 4 in dimensions <48 is exact.

5. Conclusion

We have established that all canonical unitaries in the projective Clifford group in a prime
dimension >3 lie in the same conjugacy class. Thus, if even one SIC-POVM fiducial vector
is an eigenvector of such a unitary, then all of them are (for a given such dimension). We
have also advanced a conjecture which would extend this result to all dimensions and offered
computer calculations as evidence supporting it in all dimensions <48. These results begin to
classify for which dimensions conjectures 1, 2 and 3 are equivalent.
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Note added in proof. After this paper was accepted for publication, a proof of conjecture 4 was discovered to have
been proven in references [23] and [24].
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